General Misc > Misc

simulated brain on supercomputer

(1/2) > >>

Admin:
For those interested in AI, from the article:
"A network of artificial nerves is growing in a Swiss supercomputer -- meant to simulate a natural brain, cell-for-cell. The researchers at work on "Blue Brain" promise new insights into the sources of human consciousness."

"This unprecedented piece of hardware consists of about 10,000 computer chips that act like real nerve cells. To simulate a natural brain, part of the cerebral cortex of young rats was painstakingly replicated in the computer, cell by cell, together with the branched tree-like structure of the synapses."

"A whole processor is currently needed to simulate the behavior of a single cell."
(I guess this shows that simulating a brain requires much more processing power than just building one that works)

http://www.spiegel.de/international/spiegel/0,1518,466789,00.html (part 1)
http://www.spiegel.de/international/spiegel/0,1518,466789-2,00.html (part 2)

My rambling thoughts:
I can imagine a human brain version of one of these being not too much greater of a step . . . minus the body to interact/learn with the world, of course . . .

In the future, I can see researchers inputting DNA, and then simulating growth of proteins and such to form an entire simulated brain. No need to input neurons 'painstakingly,' just copy/paste some DNA, add in a sprinkle of nurture, and its set to go.

Anyway, I see this project on the right step :)

Nyx:
I don't think they've even completely mapped the neural pathways of the brain of an ant yet... Not to mention that rats have close to 1 million neurons, so 10000 processors simulating one neuron each most likely won't do.

In my opinion, money would be better spent trying to do a complete mapping of the brain of insects, or small animals, and then perhaps larger animals, in the hope of understanding how it all fits together, rather than trying to simulate a tiny fraction or something we know so little about.

Somchaya:
Wow, I read the article and think it's very inspiring.. I agree that we should start mapping simple creatures first and slowly move upwards.

I do think some research into insects' brains (do they have brains?) have already been done. I remember a prof telling us about how they hijacked a cockroach's brain to remote-control it via a joystick. I'm not sure how detailed the analysis of the brain was done then (like whether or not they mapped all the neurons or just stuck electrodes in that worked) but some research into the neurons was probably done.

I think this project is really cool and if it works within a nice time scale, that would be really great!

JesseWelling:
Nyx wrote:

--- Quote ---Not to mention that rats have close to 1 million neurons, so 10000 processors simulating one neuron each most likely won't do.
--- End quote ---

Last time I checked 1 processor could do more calculations than 1 Neuron. The issue you have to contend with is that Processors can calculate atomicaly, but can make fewer connections.

Nyx:

--- Quote from: JesseWelling on February 16, 2007, 08:49:15 PM ---Nyx wrote:

--- Quote ---Not to mention that rats have close to 1 million neurons, so 10000 processors simulating one neuron each most likely won't do.
--- End quote ---

Last time I checked 1 processor could do more calculations than 1 Neuron. The issue you have to contend with is that Processors can calculate atomicaly, but can make fewer connections.

--- End quote ---

"A whole processor is currently needed to simulate the behavior of a single cell."


--- Quote ---I do think some research into insects' brains (do they have brains?) have already been done. I remember a prof telling us about how they hijacked a cockroach's brain to remote-control it via a joystick. I'm not sure how detailed the analysis of the brain was done then (like whether or not they mapped all the neurons or just stuck electrodes in that worked) but some research into the neurons was probably done.
--- End quote ---

Of course insects have brains. The cockroach thing was done by playing with the roach's antennae, so there was no direct interface with the brain.

As far as I know, the biggest problem is that researchers have no effective tools to precisely map map the circuitry inside a brain. Dissecting won't do, 3D medical scanning technologies are just not that precise. I've heard of an experiment where, to map visual pathways in monkeys, they placed a probe at various locations and tested whether or not they got a signal when the money saw a dot in different places on a screen, for example.

Ideally, in order to study this, we would need some sort of 3D magnetic resonance scanner that is precise up to a few microns, to scan specific regions and create maps of the layout. This may not be doable for a complete brain, but even if such a scanner could only study little bits at a time, scientists could make small slices, and it could still be practical.

Navigation

[0] Message Index

[#] Next page

Go to full version