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Abstract— This paper introduces a novel robot which can run
on the surface of water in a manner similar to basilisk lizards.
Previous studies on the lizards themselves have characterized
their method of propulsion and their means of staying afloat. By
slapping and stroking their feet into the water, the lizard effects a
momentum transfer which provides both forward thrust and lift.
The design of a biomimetic robot utilizing similar principles is
discussed, modeled, and prototyped. Functionally, the robot uses
a pair of identical four bar mechanisms, with a 180° phase shift to
achieve bipedal locomotion on the water’s surface. Computational
and experimental results are presented and reviewed with the
focus being a maximization of the lift to power ratio. After
optimization, two legged models can experimentally provide 12-15
g/W of lift while four legged models can provide 50 g/W of lift.
This work opens the door for bipedal and quadrupedal robots
to become ambulatory over both land and water, and represents
a first step toward studies in amphibious stride patterns; step
motions equally conducive to propulsion on water and land.

Index Terms— Biomimetics, legged robots, basilisk lizard, walk-
ing on water.

I. INTRODUCTION

Small, lightweight animals have a large variety of floatation
mechanisms open to them. There are spiders and insects which
float using surface tension, and propel themselves using menis-
cus in the water and marangoni flows. Larger animals have
fewer options. Lizards, aquatic birds, and marine mammals,
with their larger bulk and higher mass, utilize buoyancy, viscous
drag and momentum transfer [1].

The basilisk lizard (Basiliscus sp.) is capable of running
across the surface of water at approximately 1.5 m/s, and a
stepping rate of 5-10 Hz (per leg). Four factors influence the
lizard’s ability to stay afloat: a) body mass, b) characteristic
length, ¢) running speed, and d) shape of the foot. All of these
variables are inter-related, and the morphological relations to
the lizard’s water running have been characterized in [2]-[4],
(61, [71.

Biomimetic robots are those machines which emulate some
aspect of a living system. In this case, the ability to run over
water is what our robot attempts to duplicate. This robot em-
ploys momentum transfer for both lift and propulsion, instead
of surface tension, which other water walking robots employ
[8], [9]. The goal is not to copy nature, but to understand the
principles of operation, and use or improve on them for use in
our own creations.

The knowledge gained by this work will help expand the
limits of legged robot locomotion. A legged robot capable of

walking across land and water quite literally has the entire
world open to it. Further work in this field can lead to
completely amphibious bipedal or quadrupedal motion. Appli-
cations include exploration and search and rescue in partially
flooded or marsh-like environments, and of remote controlled
toy models which can run anywhere. This work can also help
increase the understanding of the basilisk lizard and its ability
to walk on both land and water.

In this paper, we use the work of others to develop an
understanding of basilisk water running. We then adapt this
knowledge to a general four bar mechanism interacting with
water to create a computer model with real, predictive value.
We first emulate, and then optimize the stepping path of a
basilisk lizard. To establish our model’s validity, we built
several prototypes, and measured their ability to lift weight out
of the water. Lastly, we found ways to improve on nature, and
provide our devices with more lifting ability with lower power
expenditure.

II. L1ZARD WATER RUNNING

A basilisk’s water running stride can be roughly divided into
four phases: slap, stroke, recovery up and recovery down [4].
The forces experienced by the leg and foot are different in each
phase, and have differing effects on the lizard’s ability to stay
afloat. These phases are shown in Fig. 1. Surface tension effects
on the ability to run on the water’s surface are negligible.

A. Slap Phase

During each step on the water, an initial slap at the interface
pushes up on the basilisk’s foot. For younger, lighter lizards,
this slap force can provide all of the lift necessary to stay afloat.
The lizard’s ability to generate excess lift during the slap phase
of the stroke declines as the mass of the lizard increases [3].

The slap phase begins when the foot first contacts the water.
Foot motion is primarily downward, and the magnitude of the
upward force is much greater than anywhere else in the step.
From [3], the maximum slap impulse (Ijj"7) is a function of
the effective radius of the foot (r.ss) and the peak velocity
during the slap (upeqk):
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Fig. 1.

B. Stroke Phase

After the slap phase, the lizard pushes against the water
beneath its foot, stroking downward and creating an air cavity
in the water. The momentum transfer from the lizard’s foot
to the water during this stroke phase generates the rest of the
lift force necessary to stay afloat most of the forward thrust.
While basilisk lizards do apply significant forces to the water
in a lateral fashion, it is felt this is done for balance and
stabilization, and not for lift. Or, this lateral motion may be
an anatomical limitation imposed by the creature’s posture [6].
It is important for the lizard to retract its foot from the air
cavity before it collapses, or it will sink.

For heavier lizards, most of the lift comes from the stroke
phase. The drag on the foot is a combination of hydrostatic
drag due to increasing depth, and inertial drag from momentum
transferred to the fluid. From [2], [3], a good fit for a lizard’s
foot - or a disk - entering the water is:

D(t) = C5[0.5Spu® + Spgh(t)] )

where D(t) is the time varying drag force, C}, ~ 0.703 is
the constant drag coefficient, p is the density of water, g is
acceleration due to gravity, S = 7r? ¢ 1s the area over which
drag is occurring, and h(t) is the time varying depth of the foot.
This holds true over a large range of velocities for both lizards
and experimental equipment.

C. Recovery Up and Recovery Down

When pulling its foot out of the water during the recovery
up phase, the basilisk lizard will curl the toes inward, to
prevent accidental drag on the cavity walls. This takes place
entirely within the air cavity, and must be completed before
the cavity collapses. During recovery down, the speed of the
stride increases as the lizard prepares to slap the water surface
in the next stride. No significant forces are experienced by the
lizard’s foot in either of these phases.

D. Timing

The period of time that the cavity is open (7s¢,;) is dependent
upon the shape of the foot of the lizard [3]. For a circular disk,
the relationship is as follows:

Tsear = 2.285(ress/9)"° 3)

Phases of a basilisk lizard’s step. Time for each frame is shown in milliseconds in the upper right corner. Reprinted with permission from [4].

This period sets an absolute minimum on the frequency. The
lizard must slap down, stroke, and remove its foot from the
cavity in less than Ts.,; seconds. This equation demonstrates
that larger feet can, in theory, lead to slower stride frequencies,
but there seems to be no correlation in the wild; all basilisks
run at the same pace [3].

III. FOUR BAR MECHANISM MODELING

To mimic the motion of a basilisk’s legs, a four bar mech-
anism in a Grashof crank-rocker configuration was used. Be-
cause the four bar mechanism is planar, only the side projection
of the lizard’s motion can be emulated. After development, the
computer model was used to make predictions of the lift a given
four bar mechanism could provide.

A. Kinematics

Fig. 2 shows a four bar linkage and its resultant loop
shape. Link A is assumed to be the body, and is considered
stationary in all computer models. Lengths of all four linkages
are variables, and the angle of Link A is also variable. The tip
of Link E is considered the ankle of the mechanism.

Using equations and relations found in [5], it is possible to
derive the position and angles of Links C and D given the
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Fig. 2. Diagram of a generic four bar mechanism with links labeled. The
loop followed by the tip of Link E is shown.
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Fig. 3. Two four bar loops. The right loop resembles the step pattern of a
basilisk lizard and has the phases of a step marked. I: Recovery Down. II: Slap.
III: Stroke. I'V: Final push. V: Recovery up. The left loop is a result of iterative
improvement, and has a higher performance than the lizard loop.

orientations of Links A and B. Link B is the input link - driven
by a motor - and is given a constant angular velocity.

At any given set of angles, one can sum up forces and mo-
ments and relate them to the position, velocity, and acceleration
of each link. Adding in the external drag forces acting upon
the ankle, a 9 x 10 matrix can be created to solve for the
internal forces on each pin and the input torque applied to
Link B. This information can then be used to determine forward
thrust and upward lift on a robot as well as the torque required
by the motor in order to maintain this motion. All of these
forces are functions of position, and must be solved at each
orientation discretely. Two hundred positions per revolution are
consistently solved for in all simulated results in this paper.

To relate the forces on the ankle, I, and F,, the relations
derived in [2], [3], and presented in Section II are used. The
exact conditions used for each phase of a step are described
below. Fig. 3 shows an arbitrary step trajectory, with each phase
marked.

B. Recovery Up and Recovery Down

In the recovery up phase, the foot, though submerged, is
assumed to exit the water through the cavity which was formed
during the slap and stroke phases. The drag on the foot is thus
considered zero. Consequently, both F,; and F), are zero. This
phase is characterized in the model as all positions where the
ankle velocity vector is upward and toward the left. During
the recovery down phase of a step, the foot is above the water
level, and is entirely in air, so forces are assumed zero. In the
model, this phase lasts for all positions where the ankle height
is greater than the water height.

C. Final Push

This phase of the step is actually a subsection of the stroke
phase, but has different mathematical conditions than the rest
of the stroke. It is characterized by the ankle velocity vector
being upward and toward the right. During this part of the
stroke, it is assumed that only the z-component of drag exists.
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Fig. 4. Lateral view of lizard limb positions relative to its hip. The path of
each point is counterclockwise. Solid points indicate stance phase, open points
indicate recovery phase. Reprinted with permission from [4]

Because the ankle is rising, and the foot is roughly vertical,
any y-component of drag would be a shear force on the foot,
and not a pressure-difference force. Hence, it is assumed the
y-component is negligible, and only the z-velocity and z-
component of drag are non-trivial. The magnitude of the drag
force is given by (2), with the velocity being only the velocity
in x.

D. Stroke

In the computer model, the stroke phase begins when the
ankle velocity angle is equal to or greater than negative 45°.
When this occurs depends on the water height and the loop
shape, but in general occurs shortly after the ankle has been
submerged. This phase continues until the ankle has reached
the lowest point of the loop. Drag on the foot is assumed to be
defined by (2), with both x and y components of force existing.

E. Slap

During the basilisk’s step, the slap phase can convey an extra
amount of lift, depending upon the speed of contact and the
power abilities of the lizard. This phase of the step is for all
positions where the ankle height is lower than the water height,
and the velocity angle is less than negative 45 degrees. At this
time, the slap phase in our simulation is governed by the same
equations as the stroke phase. It is hoped that this will yield a
conservative estimate on the lift provided by the robot, as the
slap phase - in reality - provides a surplus of lift [1]. Future
iterations of this model could include a slap phase correction.

FE. Loop Shaping

With each of the five linkage lengths and the angle of Link
A all as variables, initial loop designs were trial and error. It
was desired to generate a loop that approximately resembled
the path followed by the basilisk during a step. Using charts
and figures from [2], the values of each of the link lengths were



Fig. 5. A CAD rendition of a future version: a fully autonomous, amphibious,
water running robot. 2 cameras (C), 1 transmitter/ receiver (R), 2 DC motors
(M), 4 speed controllers (SC), 2 servo motors (S), and 2 linear actuators (L)
are all powered by a large battery (B). These actuators allow for dynamically
changing the foot orientation, the length and orientation of Link A, and the
stride speed on each side, which lets the robot optimize its gait and speed
for land or water running. The cameras allow for stereoscopic vision, and the
ability to estimate the distance to land/water interfaces.

adjusted until they resembled the basilisk stride, as shown in
Fig. 3 and Fig. 4.

After the initial shaping, each of the link lengths was varied
by a small amount to see the effect on lift. A generic variable
called performance (Pe) was defined, and link lengths were
adjusted to maximize it.

_ M)
Pe = BOV) “4)
P =Tha:(27f) (5)

where M is the mass a loop can lift, P is the power required to
run the loop, T4, is the maximum torque required by the
motor, and f is the step frequency (per leg). As each link
length was varied, the performance of the loop was estimated,
and compared to the starting point. In this fashion, a crude
optimization was iteratively performed, with each successive
iteration having a higher performance. This process continued
until singularities in the loop started appearing. For all of these
optimization steps, it was assumed that the body had an angle
of zero; hence, the shafts of Links B and D are at the same
height. An improved loop with higher performance than the
basilisk mimicking loop was found, and is also shown in Fig. 3.

IV. SIMULATIONS

Simulation refinement was occurring simultaneous to ex-
periments, with both methods being used to improve each
other. Because many simulations could be performed in a
short amount of time, it was used to predict the effect of
altering design parameters before experimenting. Experiments
were then performed to confirm simulated results, and improve
the computer model. Once the computer model was giving
approximate results (within 50%), and was responding to
variable changes in a manner similar to reality, it was used
to optimize several geometric relations.
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Fig. 6. Simulated effects of characteristic length and speed scaling on a four
bar mechanism with link lengths A=48, B=16, C=55, D=30, E=40 (mm).

The results of varying several different parameters are dis-
cussed. For these tests, the height of the water was assumed
to be at the time averaged y-location of the loop, so that 50%
of the time is spent above and 50% of time is spent below
the water line. A computer aided design (CAD) model of a
possible future robot is presented in Fig. 5, and serves as a
visual representation of the system being modeled.

A. Length and Speed Scaling

To increase the lift that a four bar mechanism provides, one
can maintain the relative link lengths, and simply multiply
them all by a scaling factor, SF. We wished to know if the
performance of a given loop could be improved by scaling
upwards or downwards, or if an optimum size scale existed.

Another method to increase lift is to increase the stepping
frequency. From (3), there is a minimum velocity that must be
maintained for the foot to escape the cavity collapse. This is
based almost entirely on the effective radius of the foot, and
for different four bar linkages with the same foot diameter, this
lower limit is a constant. Hence, for speed scaling SF > 1.
Once again, we wished to know if there was an optimum speed,
a general trend, or no effect on performance.

The results of scaling link lengths and speed are shown in
Fig. 6. Results are normalized so that when the SF = 1,
Pe = 1. One can see that as the length scale increases, the per-
formance decreases. Hence, smaller length scales have higher
performance. Speed, like length, also scales negatively. Slower
speeds approaching the cavity collapse limit have the highest
performance. The exact relationship of each is dependent upon
the loop itself, and bears no immediate physical meaning.

Between the two, it seems that speed scaling is slightly
preferable. Hence, if the lift ability of a given loop must be
increased, it is better to increase speed than to increase length.

B. Foot Diameter

A third method to increase the lift capacity of a four bar
mechanism is to increase the diameter of the foot. This has
two effects: larger diameters lead to larger Ts.,; from (3), and
hence lower stride frequency, and the larger area leads to larger
drag forces from (2). Lower stride frequencies lead to higher
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Fig. 7. Simulated effect of adjusting the foot diameter. Loop A: link lengths
A=40, B=16, C=40, D=24, E=32 (mm). Loop B: link lengths A=48, B=16,
C=55, D=30, E=40 (mm). Loop C: link lengths A=50, B=20, C=40, D=40,
E=40 (mm).

performance, as seen in Fig. 6, but larger drag forces will
increase both the lift and power requirements. As in the speed
and length scaling cases, we wished to know if there was an
optimum foot diameter, a trend, or no effect on performance.

Fig. 7 shows that as the foot diameter is increased, the
performance also increases. Further, this effect seems to be
independent of loop shape, as demonstrated by the similarity
of the normalized performance lines for all three four bar
linkages. The performance scales with D%®, which is logical.
Examination of (2), (3) and (4), combined with the knowledge
that power scales with force multiplied by speed, one can see
the numerator of (4) scales with D%, and the denominator
scales with (D%)(D""). Hence, to maximize performance,
increase the foot diameter. The limitations of the diameter are
placed by practical, and not theoretical constraints; determine
the largest foot diameter for a robot that is reasonable in relation
to the rest of the body. In our experiments, Dy = 40 (mm) for
all trials.

C. Foot Angle

When the basilisk runs on water, it adjusts its foot angle
throughout the step. This maximizes the lift and thrust gener-
ated, and also allows the lizard to streamline its foot during the
recovery phase. For this simple device, a static foot angle is
most easily achieved when using rigid, passive components.

For initial predictions, it was assumed the foot angle would
be ideal throughout the loop; i.e. that the plane of the foot
would be perpendicular to the velocity vector direction. This
is not possible with a non-dynamic foot, so the program was
adjusted to incorporate a set foot angle. The angle was then
varied to determine the optimum. Zero degrees was assumed to
be in line with Link C, and angles follow the counterclockwise
convention.

The results of these tests are shown in Fig. 8. This is another
loop dependent optimization, so these tests were performed on
the highest performing loop from the iteration stages. For angles
between -5° and 10°, there is only a slight decrease in the lift
provided. To ease assembly of prototypes, all tests were done
with 0° foot angle.
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Fig. 8. Simulated effect of adjusting the foot angle. Done for link lengths
A=48, B=16, C=55, D=30, E=40 (mm).

For these tests, performance is not a useful metric because it
remains nearly unchanged for each foot angle. This is logical
because foot angles which provide less lift require less power
to move the foot through the step path.

D. Extra Legs

Throughout the simulated results, power required was taken
as the maximum torque multiplied by the speed. But, the torque
required throughout each step varies greatly and, depending on
the loop, can even drop below zero. If an extra pair of legs is
added, phase shifted by 90° from the first pair, then it might be
possible to double the lift while only marginally increasing the
power requirements. Similar scaling will also occur if 4 more
legs are added to that. The effect to the torque can be seen in
Fig. 9.

After 8 legs, one enters the realm of diminishing returns
when it comes to increasing performance. For the link lengths
A=48, B=16, C=55, D=30, E=40 (mm), two legs yields a
performance of 32 g/W, and four legs yields 55 g/W, but
eight legs only lifts 58 g/W. But, it is interesting to note that
increasing the number of legs beyond eight can increase the
lift while maintaining the same performance. This implies that
the best way to boost lift is to increase the number of legs, not
scale the length or the speed. Effectively, one can decouple the
speed effects from the lift entirely, and use a speed control for
both turning and stability.

V. EXPERIMENTS

To test the simulation results, a two-legged setup, similar to
Fig. 10, was created. This was supported with carbon fiber -
and later, acrylic - struts connected to a counter weight. Both
the mass of the test robot and the counter weight mass were
above the fulcrum height; hence, the system was unstable, and
tended to fall one way or the other. On the robot side, there was
a support under the struts, allowing the robot to rest at a slight
angle with the counter weight suspended in the air. The fulcrum
of this counterweighted system was placed as close as possible
to a central shaft, about which the entire assembly could revolve
during testing. A ten pound weight held the central shaft and
assembly in place in a tub of water during testing.



A. Testing Procedure

First, the height of the input axle was measured relative to
the tub bottom as a reference point. Water was added to the tub
until the feet of the robot could interact with it (approximately
2-3 mm above the lowest point of the toe path) and the height
was measured relative to the axle height. Then, the counter
weight was moved to the point where the two bodies were
perfectly balanced with the struts are exactly horizontal. The
motor was started, and the robot was lightly held down until
transient vibrations diminished. After letting go, if the robot
pushed itself up and over the stable point, weight was added
to the robot until it could no longer push itself up. Afterward,
the system was rechecked to ensure it was still in its balanced
position (which shifts as the machine gets wet). The weight
was recorded, more water was added, and the procedure was
repeated.

To ensure that the vibrations of the motor itself did not cause
the robot to push over its stable point, each four bar system
was run after calibration while dry. This led to a large spacing
between the fulcrum and the robot system, and a large amount
of upward push required to lift it. On later trials, when excessive
vibration did excite the machine over its stable point, the struts
were remade and mild damping was added.

B. DC Motor Results

Initially, a DC motor was used to test simulated predic-
tions and refine the computer model. Testing was performed
for various loop configurations, to determine if the computer
accurately predicted more optimized loops. This motor had no
speed control, so the speed used in predicting lift was the
in-air motor speed, approximately 5 Hz, determined using a
stroboscope. Results are shown in Fig. 11.

Because DC motors were used, the speed decreased as torque
increased. These results showed that, while overestimating, the
predictor program had a slope similar to reality, and could
take into account varying water levels accurately. This led to
improvement of the estimator for later trials.

C. Stepper Motor Results

More promising and accurate results were found when a
stepper motor was used. Because speed can be controlled with
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Fig. 10. Photo of the four legged experimental setup used for testing. Two
legged versions with variable link lengths were also used to test the accuracy
of the computer models.
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Fig. 11. Experimental DC motor results for three 4 bar sets. Dash-dot lines

are theoretical predictions; regular lines are experimental data. Loop A: link
lengths A=40, B=16, C=40, D=24, E=32 (mm). Loop B: link lengths A=40,
B=16, C=32, D=32, E=32 (mm). Loop C: link lengths A=40, B=16, C=24,
D=40, E=40 (mm). All tests were run at 5 Hz.

a stepper motor, more accurate information could be provided
to the estimator program. One can see from Fig. 12 that the
results of experiment and theory more closely match, and the
maximum lift we are getting is 17 grams at 6 Hz. For this
result Pe = 15 g/W. These results are still much lower than
the lift a basilisk lizard can generate, around 34 g/W [7]. These
experiments were carried out on a high performance loop while
varying the motor speed.

D. Four Legged Results

As mentioned in Section IV, simulation results implied four
legs would have a higher performance than two legs. As such,
the experimental setup shown in Fig. 10 was used. This was
once again driven by a DC motor without speed control,
because of the higher power ratings and the ease of installation.
Using a scaled up version of a high performance loop, the front
and back legs are driven at the same speed, offset by 90°. The
results of testing are shown in Fig. 13.

The four legged results are, in appearance, similar to the two
legged DC motor results. This implies that if a powerful, speed
controlled motor is used, the lift curve should resemble the two
legged stepper motor results, in Fig. 12, and the theoretical and
experimental lifts would converge. The maximum lift provided



was 16.6 g, which results in Pe = 49.5 g/W, greater than what
two legged basilisk lizards produce.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a robotic propulsion system based upon the
water running ability of basilisk lizards is modeled and tested.
Using four bar mechanisms as legs, two legged models can
lift upwards of 15 g/W. Employing equations of motion found
in the literature, a computer model with predictive value is
developed, and is used to optimize the physical design. From
these simulations and optimizations, four legged versions are
found to have superior performance compared with two legged
robots. Four legged robots can provide upwards of 50 g/W, an
increase of over 200%. The effects of altering several design
variables, including characteristic length, running frequency,
foot angle, and the lengths of each link in the four bar
mechanims are simulated. From this, we determined that both
speed and length scale negatively, with lower performance at
higher frequencies and longer links. For our highest performing
loop, the angle of the foot provides the largest lift when near
zero®, relative to Link E. Our mathematical predictions are
confirmed through experimentation with both a DC and stepper
motor for the two legged model, and a DC motor for the four
legged model.

Our future work will be toward creating a device capable of
lifting its own weight while water running. In addition to creat-
ing enough lift and thrust, we are investigating implementation
of a control system and incorporating a steering mechanism.
We will be increasing the degrees of freedom in the system,
including, but not limited to: actuated ankles, individual leg
speed control, and energy storing springs for land locomotion.
We are also investigating including additional joints to make
each four bar mechanism dynamic, so we can adjust loop shape
when transitioning from water to land, much like the device
shown in Fig. 5. Our ultimate goal is a fully autonomous and
amphibious water runner capable of traversing both land and
water.

Some issues that will have to be addressed are those dealing
with the interaction of mechanical and electrical components
with water. All wiring and exposed electronics must be shielded
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Fig. 12. Experimental stepper motor results for three 4 bar sets. Dash-dot
lines are theoretical predictions; regular lines are experimental data. Done for
link lengths A=40, B=16, C=40, D=24, E=32 (mm).
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Fig. 13. Experimental DC motor results for a four legged model. Dash-dot
lines are theoretical predictions; regular lines are experimental data. Done for
link lengths A=65.3, B=21.8, C=74.8, D=40.8, E=54.4 (mm).

from the water for safety purposes and to prevent harmful shorts
from damaging any of the systems. Mechanical parts must be
rust proof and, preferably would be either hydrophobic, or have
a hydrophobic surface treatment. This would prevent loss of
lift to the accumulation of water on the robot’s surface. Also,
actuators and power sources must be chosen to be light weight
yet highly efficient to reach the performance anticipated by
simulations. Lastly, light weight, high strength materials must
be chosen for the legs to minimize torque required to move
them through space, and to keep the mass distribution as central
as possible.
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