1
« Last post by artbyrobot1 on November 22, 2024, 04:32:23 PM »
Ok so I was struggling to plan out how the flat spiral coil constant force spring would maintain constant tension on my first winch in place pulley the past couple days and I was studying how tape measures use these springs. Then it hit me when a colleague was mentioning belt pulley based downgearing that a belt pulley based downgearing for this first pulley would remove all the issues of derailment and need for constant tension during whole duration of travel a winch style would require in this design. Also, since its just .4lb-.8lb of force for the first pulley downgear, as long as the belt is reasonably tensioned and has some decent grip to it, I should not deal with a ton of slippage issues and the motor's output should be passed along well. So here is my beginning attempt at converting my first pulley to a belt based pulley instead of fishing line winch based pulley. This is made just using adhesive transfer tape applied to one side of a nitrile glove and cut out into a 1.1mm wide strip and applied to the two pulleys directly. Built in place. Early testing shows it needs more layers to have less stretchiness or needs to be reinforced internally with fishing line wraps between layers to prevent so much stretch to it which causes slippage. Also, the motor output shaft acting as the winch pulley is a combination of a bit too small in diameter and a bit too smooth to create a proper grip. So I'm thinking of thickening it up some and adding a grippy surface to it so that it grips the belt better with less slippage. I am considering using silicone rubber to coat the motor output shaft or several wraps of nylon upholstery thread and super glue to thicken it then coating that with carpet anti-slip paint. Or silicone. I'm considering making the belt from a cloth coated in silicone or carpet anti-slip paint and then sewn tightly into place over the pulleys - creating a sewn seam for a tight grip. I'm considering a tensioner pulley but I think that's overkill and should be avoided unless it proves absolutely necessary. I have not explored purchasing options at this time but of course I'm open to look into this in the future. The thing about a premade is it would have to be a perfect fit in both length and width and I'm not sure if that will be easy to find or not. This is all a very new approach so I can investigate that later. For now I'm happy to just move quickly on the prototyping with materials on hand.
2
I see there are many local competitions. I hope you find a suitable group soon.
3
« Last post by endinvest on November 10, 2024, 08:50:07 PM »
Hello, I'm also new, glad if I can connect with your project. Could you provide some more information about it?
4
« Last post by artbyrobot1 on November 08, 2024, 12:48:37 AM »
I just ran a test of the second turn in place winching pulley and ran into several problems. First I noticed my main lines turning the motor were not the full 27"+ which I thought they were but just remeasured and found they weren't. My bad. So I have to rewind those to fix that. Next, I noticed that just as we depart from the motor output shaft we experience mechanical advantage with each downgearing, so also when traveling from the downgeared area back to the motor output shaft we experience mechanical disadvantage. Up-gearing. Which means the bolt hanging as a load to place tension on the pulleys during a release cycle was not enough weight anymore (was barely enough before now clearly not enough). Now note that the bolt represents what a tension spring will normally be doing, tensing up the winch system to keep it all solid and tight. I don't want this to have to be much heavier than the bolt. I want the system to not need much pulling to remain good in tension. The friction of the teflon tubing plus mechanical disadvantage etc was causing the pulleys to not remain tense (and their not being lubed yet on the junction between fishing crimp sleeve and thumb tack. So my solution I'm now contemplating is either moving one of the turn in place winches down to the location of the Archimedes pulleys on the forearm area and putting the tensioner apparatus between it and the previous pulley mounted on the motor so that the tensioner apparatus does not suffer as much mechanical disadvantage due to up-gearing OR I get rid of the second pulley entirely and just have the winch in place be a single pulley 2:1 and the Archimedes system be 16:1. Which still works as we have then 32:1 which is great still. Under such a system, the original 27" winching would be reduced to 13.5" by the winch in place pulley attached to the motor. The Archimedes pulley system then needs to go down, around one pulley, back up, around another pulley, then down and around another pulley, then back up and tie off. The total travel for those one down, one up, one down, one up (4 trips) is 13.5/4 so 3.4". And we'd sit at 8:1 at that point. so adding two more pulleys beneath that first group would add another 4:1 for 32:1 total. And those two pulleys would add another half inch tops so that gives us around 4" total length of the Archimedes system and not too crazy many turns in that first system like we had in our first prototype. Still quite simplified comparatively speaking. So this is a very viable solution. And that 4" is around 10cm and we had 11cm already planned for this purpose in the CAD in the forearm from before. So we are still within that target and viable still without any change to the CAD at all which is great. Anyways, back to the test's issues discovered. Oh yeah, also, the load (in this case a bolt hanging) struggled to keep the turn in place winches under tension while the motor was releasing the bolt (loosening or unwinching itself) not only because of the mechanical disadvantage from the pulley upgearing itself and from the friction in the TPFE guidance tubing but also from the friction of yet another pulley and its friction between its fishing crimp sleeve and its thumbtack. So I was having to manually pull down assisting the bolt, pulling down fairly hard just to get the system to stay taught and release without becoming a derailed tangled mess. One other work around if I were insistent on going with more than one winch in place pulley would be to wind up extra line onto each turn in place winch pulley and have that directly attached to a tensioner spring placed wherever on the robot. This would always keep tension on just that winch in place pulley and be responsible for just that pulley and suffer no mechanical disadvantage beyond the TPFE guidance tubing it has to pass through to get there which shouldn't be too bad if the spring can be nearby. This is a valid solution but adds another layer of complexity to the winch in place pulleys and now more routing and string to deal with. It also means loads of extra springs to place. Attached is a drawing of the proposed tensioning mechanism for tensioning each pulley individually. In any case, were I to add this type of tensioning apparatus to each pulley and the necessary extra plastic disc and vertical spacing to glue string to the fishing crimp sleeve and wrap it up, that takes up even more vertical space in the system and we were already really lacking sufficient space as is. So to gain the extra space needed to do that, we'd have to extend the height of the fishing crimp sleeve to accommodate this which would then remove the option to add the reverse direction set of pulleys to the same thumb tack. Although that is probably fine now that we were planning to achieve that with just a tension spring as the actuator for extension of fingers instead of motor actuated extension and coupling that with a n20 gear motor for extra oomph in demand on a rare as needed basis for extension action when the tension spring is not strong enough to do it for the task at hand (rare). So yeah, this apparatus would work to solve the issues I'm having with my current test setup I think. But just going 16:1 on the Archimedes instead of 8:1 on the Archimedes pulleys and simply deleting the second winch in place pulley on the motor seems like the best option to me right now. Doing so means the Archimedes pulleys bumps up from 27/4 = 6.75" for Archimedes pulleys to deal with 6.75/4 (for up and down passes around first group of pulleys) so 1.68" in length then another pulley brings it to 2.1" total length compared to 27/2 (only one winch in place pulley) = 13.5" for Archimedes pulleys to deal with 13.5/4 (for up and down passes around first group of pulleys) so 3.4" then add 2 more pulleys so 4.2". So 2.1" vs 4.2". If we keep the second winch in place pulley we shave off 2.1" in Archimedes pulley system total length and shave off one pulley from its system too. Well I think just going 16:1 on the Archimedes is my move here. The winch in place pulleys have been a finicky mess to me. I prefer the Archimedes style pulley more and prefer to have that do the lions share of the downgearing after that first winch in place pulley cuts our total run-out in half. It still is a very useful help to cut things in half like that and much appreciated. But any more winch in place action is asking for trouble. I am much less able to control it and prevent issues that I feel I can do with the Archimedes pulley system. And you all have not seen my Archimedes pulley system in action it is really beautiful and elegant to watch and totally silent. So I'll rely on it more and keep the winching turn in place pulleys to the minimum 2:1. Someone trying to do their own robot may appreciate that I'm leaving these options for further exploration open for future devs. I'm going the way I am most comfortable but if you think the winching method is more comfy for you, downgear more with those than I chose. I am not ruling that out here - just preferring the Archimedes more based on my experiences so far.
5
« Last post by artbyrobot1 on November 07, 2024, 12:49:28 AM »
I have added the final pulley and rigged the guidance TPFE tube up to that pulley and routed that to the general vicinity of the Archimedes pulley downgearing system. As seen in the photo, I used super glue and post it note paper to form a TPFE guidance tube support structure to hold it in place as well as wrapped it in fabric tape and soaked that tape in super glue. I applied the super glue with the tip of a sewing needle as a precision application method. The next step will be to test the pulley system as is and make sure everything is working really well. If all testing passes, we will then modify the Archimedes pulley system on the forearm that we were using before to simplify it some since it now deals with only 7" or so of string compared to 27" of string it dealt with when we did not have the turn in place pulley system in place. So it will now be much more compact and fewer pulleys needed in it. So a bit of redesign and part recycling and we'll be good to go on that. Also, before, it was a 16:1 Archimedes pulley system whereas now it will just be a 8:1 system.
6
« Last post by artbyrobot1 on November 06, 2024, 11:00:49 PM »
After further deliberation, I have concluded that I should put 4:1 downgearing on the motor's top with the turn in place pulleys and put 8:1 further downgearing located nearer to the joint being actuated - in this case the distal forearm. My reasoning for this is as follows: the routing from motor to near the joint is facing turns and friction etc and these become smaller factors when under lesser loads. So leaving things more high speed low torque initially during this phase of the routing is advantageous to lower friction and issues relating to deformation and compaction on the guidance tubing. This means less wear and tear and lower maintenance as well. Next, the turn in place pulleys are quite difficult to work with being very small and compact and lots of winding and whatnot is hard to deal with and tedious. Further, the turn in place style, when fully winched in has a much lesser downgear ratio compared to when fully extended due to the relative diameter size ratios of the pulley pairs involved changing in size during the winching. Whereas in the Archimedes pulley downgearing system the mechanical advantage is fixed and doesn't change during the entire flexion nor extension process. This makes it more reliable and limits our losses during the near end of the winching phase that are incurred in the turn in place technique. This ensures we retain adequate mechanical advantage during all times. Another important update is I have added axial rotation to the proximal finger joint in CAD. My index finger has a little bit of this type of control to it so I think it will be a nice boost to control and dexterity for the robot. Really maxing out the ability of the robot to finely manipulate its finger positions and improve performance of the fingers at all tasks. I added the necessary 4 additional motors to achieve this into the CAD as well. You can see the highlighted pair of axial rotation red indicator arrows which show the angle and location of the tendons from where they terminate to where they will exit the guidance tubing - the range of motion if you will. Yet another important update is I now plan to just use a spring for the extension actuation force rather than the reverse direction turning of the motor. This is admittedly going to give the extension less strength and the flexion less strength. The flexion will have less strength because it is now fighting against the extension spring to get the finger to flex. The extension will have less strength because a spring alone is making it happen rather than a strong motor making it happen. I don't mind either of these trade-offs though because it will greatly simplify the routing - cutting it in half, simplify the motor mounted pulleys, cutting it in half, and simplify the Archimedes pulley systems, cutting the amount of them we have to make in half. That is just a massive amount of time and effort saved. I just am not convinced that spending that level of time and effort just to have a stronger extension of the finger joints is worth it. Relatively passive spring powered extension of fingers is very common in hobby humanoid robot hands from what I've seen and although I've always viewed it as a lazy solution, I do see some merit in embracing more simplicity at times. Especially if you cannot JUSTIFY the added work of the alternative. The more I think about when I have needed finger extension to be very strong, the more I find that it seems to be a relatively rare occurrence. It just doesn't seem to happen often. Now as the robot grows more able with its AI and more sophisticated, and gets into more and more types of work, the occasional scenario where fully powered extension of fingers will start to crop up more and more as a need. So at that time, I am thinking we can revisit this and get the extension actuation installed. So I still plan to reserve space for it on the CAD and ensure it can be done without any major problems or redesigns needed. It should be a smooth and straightforward upgrade option. But for a minimum viable product that can meet all of my goals, it is not necessary to implement in this stage of development. In fact, it is also possible to just have the robot install these on himself once he's building the rest of his own body. Which means me doing it would be a waste of time if the robot could do it later instead of me. So in any case, this acts as a MAJOR shortcut and time-saver for me and will be a big game changer IMO. I'm excited about it. These types of big shortcuts really move the project forward in development very rapidly in large leaps saving countless hours and I love them. As long as they aren't shortcuts that will come back to bite us later, I'm okay with them. I don't think this one will bite us later so I say let's go with it! Note: it also just occurred to me that the robot could potentially have the extension actuation be in the form of geared n20 motors instead of reverse direction of the main 2430 bldc motors with pulley based downgearing. This would save alot of work but introduce noisy metal gearing to the robot. The reason I think this is okay to do is that these geared n20 motors would be slack lined and not interfere with fingers AT ALL nor be used on any way at all UNTIL the fingers need strong extension actuation - which as I said is incredibly rare. In this rare event, it tapping into these geared n20 motors for some extra oomph to get the extension to actuate harder would solve the problem and the little noise it created would be a rare occurrence type of noise. It would hardly be noticeable then and 99.999% of the time you'd never encounter this noise. The bigger issue would be noise in a common feature like blinking. Now THAT is annoying to hear gears EVERY TIME the robot blinks.
7
« Last post by artbyrobot1 on November 04, 2024, 09:59:30 PM »
This is a slow, careful hand test of the pulley. Everything looks good. Also, I did fast tests but didn't capture a nice shot of those with good hd closeup like this. In any case, this can show you some idea of how it all looks in action so far. The motor shaft is not turning electronically but is being turned by me pulling string wrapped around it to screen left is my hand pulling. To screen bottom is a hanging bolt that is being winched (not shown its cropped out of the image). I wanted to avoid working on the electronic actuation which is a rabbit hole in itself until I have the pulley system fully done and tested. THEN I will make it all work electronically as the next phase.
8
« Last post by artbyrobot1 on November 04, 2024, 12:55:31 AM »
I managed to implement a friction device for both main manual input pulleys for manually turning the motor shaft and one for creating tension on the system at all times. The former I made by just running the fishing line through a tension spring between the coils which pinched the fishing line enough to provide friction and feed it snugly into the motor shaft as it winches it. This successfully replaced the need to feed it in by hand between thumb and index finger with snug pinching action to get it to winch in tightly. For the tension on whole system need, I ended up just hanging a bolt from the final output string which put the whole pulley system under light tension. You can see the tension springs sewn into the bone fabric on the left hand of the pulley system in the attached photo. You can also see the thread going through those if you look carefully. You can also see the output pulley on the right hand side of the system and see the little metal 28ga wire eyelet I made and the string being fed through that eyelet as it heads toward the camera lense shooting the photo. It then drops down out of sight. So you have to visualize it tied to a bolt. The bolt is currently taped off to a piece of bone since I removed the tension after testing to do some repairs. So to the results: with these little modifications, the testing went much better. It was fairly reliable. The only times anything tangled up was when the bolt caught on something when I wasn't paying attention which relieved the pulley system momentarily of the tension created by the weight of the bolt pulling down by gravity and tensing up the system. As soon as the system lost that tension, it began to unravel and created a tangled mess. This happened a few times in testing and was user error. Although one time a pulley just stopped turning randomly despite the tension created by the bolt. That concerned me alot. I don't know if something got wedged in it or it was cockeyed just right or what but sometimes it gets stuck a bit. That cannot happen ever or the whole thing fails. Perhaps greasing the inside of the fishing crimp sleeve would prevent this from happening anymore. Also, the bolt is not THAT heavy. Using something with a bit more tension force placed onto the system could also help some more perhaps. I think using a tension spring as the tensioner - as shown in a drawing I posted previously - will be just the right amount of tension. I think it might pull a bit harder than the weight of the bolt was pulling. So between those two improvements I think this rare fluke will be avoided. And so far, as far as I've seen, as long as the pulleys spin freely and no tension is lost, everything appears to work perfectly. I was able to go back and forth with no issues many times besides the few screw-ups I already mentioned. So the system appears to be a success so far from testing. I can now move onto building pulley #2 and 3 and testing them thoroughly in conjunction with pulley #1. Also of note: I thought pulley #1 was a 3:1 ratio and perhaps it is at times, but the mechanical advantage ratio changes over the course of the winching process because the larger pulley gets smaller as it unwinds and the smaller pulley gets bigger as it winds up. So their relative diameters changes. Therefore, I guess we have to treat it as what is the average mechanical advantage it produces. Well in the final measurement, it cut down the original 27" of string being winched in to 13" of string on the final output. Trading down that distance of travel is the key to the creation of mechanical advantage. We want the final output to be around 0.84". We want 32:1 mechanical advantage in the end. So pulley #1 got us to 2:1 mechanical advantage only so far. The next pulley likely will get us to around 4:1 and the next one 8:1. I am considering just stopping there. I have room for two more pulleys, but at the moment I'm considering doing the last two down-gears with my Archimedes downgearing pulley design. I think that method might be a little more robust and I kind of just want to use both methods at this time. Both have their pros and cons. I feel using both methods can help me learn which one is superior and learn to perfect both as I see which one is more durable long term, which one has more incidents, which one tangles from time to time and why and resolving those issues if they come up. The great thing is this: the compact pulley method (thumb tack method) is giving us 8:1 downgearing roughly. Of the 27" of total draw, that brings output draw at that point down to 27/8=3.37". So the final two downgearing stages will be reducing 3.37" draw down to 0.84" draw. So 3.37"/2=1.68" then 1.68/2=0.84". So the Archimedes pulley system only needs TWO pulleys (down from whatever huge number we had before in our previous monstrosity of wraps and turns we had to do). To make just two pulleys is a piece of cake. Also, given 3.37" is all we are working with for the first pulley, and the pulley is equidistance in the center of that stretch, the total draw length of the two string halves wrapping around that first pulley is only 1.68". And the next pulley's total length is .84". So 1.68+.84=2.5" give or take is the total length of the pulley system for this. This edition of the Archimedes pulley system adds 4:1 downgearing to the compact thumb tack pulley system's 8:1 downgearing. Giving us a total of 8x4= 32:1 downgearing. That 2.5" total length Archimedes pulley system setup is so small compared to my original 16:1 Archimedes pulley system I published earlier that it is a lot more practical to use and we still save a ton of space. Note: I could do the rotate in place style pulleys but just put them on the forearm instead of the motor as the motor is already getting quite cramped and tedious to work with. Or I can do Archimedes pulley system style with pulleys that move lengthwise along the forearm. Both styles are good. I lean toward the latter though at this time. Both would work though. I kind of just like the variety for learning purposes but I'm not 100% sure on this decision. Note: an advantage to completing the final 4:1 downgearing on the forearm closest to the finger joint is the total distance of string travel from the motor to the finger joint and the total bends it takes all adds friction and when that friction is placed with a large force on it, it is harder on the teflon guide tubing. But by only doing partial downgearing at the location of the motor and saving the next phase of downgearing for being closer to the finger joint in question, we avoid a lot of forces and frictions in the teflon guide tubing running longer distances to get to the finger. In some cases, I have motors intended to actuate finger joints placed in my CAD as far away from the finger joint as the upper spine area and some in the lower latimus dorsi area! That is a LONG travel to go across the torso, past the shoulder, down the humerus, past he elbow, down the forearm, and then FINALLY to the finger joint it is actuating. That is a LOT of friction and turns introduced. So to navigate such long distances, it is ideal to have it be just high speed low torque during that time-frame and only beef up the torque with downgearing NEAR the finger joint it is actuating. Note: the fishing line selected for downgearing while in the early phases of downgearing gets to be very fine low test strength fishing line like the 6lb test braided pe fishing line I'm using here. However, as the downgearing progresses, trading speed for torque, so also the fishing line selected for these sections needs to progressively get larger in diameter to accommodate the higher tensile forces involved. So we'll be graduating from 6lb test to 20lb test then 70lb test then 130lb test. So we'll be changing fishing line diameter 4 times in the routing from the motor output shaft to the joint itself! That said, keeping the downgearing near the motor minimal is best since it enables us to use the finer diameter fishing line for the long travel distance from the motor to the finger area. Then only once near the finger do we do the final downgearing stages and beef up to the larger diameter fishing lines. Then another advantage to all of this is the teflon tpfe guidance tubing we are using as guide tubing gets to be smaller diameter guidance tubing for those long fishing line runs. This saves space and enables us to make tighter turns without as much consequences in terms of wear and tear on those turns and tension/friction concentration at those turns. Also, when making turns AFTER full downgearing, the higher forces involved tend to want to crush and deform the TPFE tubing - which is why sometimes metal spring is used on the outside of the TPFE guidance tubing to make it into a Bowden cable and reinforce it to make it non-collapsible under the high tension forces that get involved by that point. We avoid all of this by keeping the downgearing at the location of the motor more minimal. Note: that all said, our downgearing at the location of the motor thus far is planned to be 8:1. The motor outputs .45lb at our distance from the center of the motor shaft roughly. So 8x.45= 3.6lb of tension force as the output at the motor then. This means we get to use our 20lb test fishing line for the long travel from the motor to the distal forearm where we will do the final 4:1 downgearing bringing us up to 32:1 downgearing. That 20lb test line is only 0.2mm diameter so it and the TPFE guidance tubing we pair with it is very fine and can easily weave its way past everything and get to the distal forearm without taking up too much space or having to be reinforced by metal spring to prevent crushing or distortion of the TPFE. At least not in theory. If this proves not true, I can always add metal springs to any sections that are getting crushed or distorted to reinforce the outer diameter of the TPFE guide tubing in those areas - probably areas near tight turns? We want to take as few turns as possible though and make the turn radius as large as possible to cut down on friction as much as we can during the fishing line routing runs.
9
« Last post by artbyrobot1 on November 02, 2024, 12:17:23 PM »
I started some testing on just the first pulley and lots of things went wrong: Twice I had to increase the pulley size because I wasn't able to use enough line winding onto said pulley for my total line draw need after accounting for the 32:1 downgear ratio. I calculated 27" as the very least it has to winch in at the motor shaft to get 0.84" total draw at the joint of the index finger which is perfect (27/32=.84). The pulleys were too small to accommodate 27" winched onto them so I had to increase the size - which meant removing everything, increasing size, then rewinding everything by hand for an hour plus! Just so tedious and annoying! Another failure was one time, the string was too loose on a pulley and a tighter wrap got under the looser wraps and then the looser ones snugged against it binding it down like someone said would happen - which made it all stuck. Also I had many derailments where the string came off the pulleys and started wrapping up on the axle off all the pulleys and getting things quite stuck that way. I've been dealing with carefully untangling and rewinding tangled messes over and over. It's been a disaster. I thought of scrapping the whole thing a couple times. However, after taking a step back, it occurred to me that the tangling issues were largely due to forgetting to put the final outlet of the system under load to tension the whole system which would keep every pulley winding nice and tight and aligned well. So this was user error and oversight, not the fault of the basic concept of the system then. I just forgot to do those parts in my rush to start testing things. I planned to only add that stuff at the very end once the whole system was done and did not think I needed to do that just to start initial testing on a single pulley. That was a faulty assumption and an oversight. The whole system always has to be under tension to work right. My bad. Lesson learned and a valuable one at that. I did not fully grasp until I saw with my own eyes the disasters the importance of keeping it all under tension at all times. Yes I knew theoretically it was needed eventually, but I did not realize the whole thing was absolutely doomed instantly every time if it is not immediately under tension even for a first set of simple tests. That was revelatory for me. I'm glad I got to see the failures first hand though because it enabled me to study what failures can be expected when tension is not placed and know intimately first hand the importance of tension and how lack of tension causes the failures specifically. Valuable to see it with my own eyes instead of only imagining it. This has helped me come up with some cool derailment prevention and loss of tension prevention mechanisms to fool proof my system more - even beyond the tension spring drawing shown in my last post. Note: At the top of the motor output shaft, you can see two large pulleys where I have wound 2 pulleys for moving the motor axle clockwise and counter clockwise to simulate the motor moving. These are temporary windings just for testing manually without messing with electronics for now. These need to be fed in under tension at their inlet and their inlet needs to have a eye positioned in front of it that forces the string to stay in line and not feed in astray out of alignment. So also the pulleys for the main motor output shaft pulley for flexion I'm testing and the first pulley downgear I'm testing. Every place a string enters a pulley needs to have a small eye that guides the string onto the pulley perfectly in alignment with the plastic discs of the pulley and prevents it from derailing. I noticed that when feeding string into a pulley I intuitively hold the string between thumb and index finger and pull the string away from the pulley as its being fed into the pulley to apply tension on the line and tight wraps on the pulley. I also align the string with the center of the pulley and hold my fingers at a minimal distance away but not too close. You want the string to be able to easily angle up and down from your finger pinch point to ride up and down the height of the pulley creating layers of wraps evenly as opposed to all wrapping in one area and not having a well distributed wrapping. If you study how to wind a bobbin on the top of a sewing machine, you see the string take 3 turns and go through a metal wheel that places tension onto it and only then does it enter the bobbin which it then winches onto the bobbin rapidly to wrap up the bobbin with string. These are all designed to create tension from the otherwise loose and floppy string leaving the main spool of thread you are feeding into your empty bobbin. I need to create a similar type of tension system to feed onto my pulleys which are acting just like that bobbin and need the same type of setup to succeed. To create the eye that centers the string and forces it to neatly stay on the bobbin and not derail so easily, I plan to use 28 ga tinned copper bus wire. I will cut out a small section of that wire and glue it to the base platform the thumb tacks are glued to and then run it vertically and then form the eye shape that acts as a guide and derailment preventer. The eye will just be a oval with a couple legs glued down with 401 glue to hold that oval into position. For the tension maker, I'm planning to use just a couple windings of tension spring with two small square pieces of plastic which will sandwich together and be pinched together snugly by the tension spring and the fishing line will be fed through this. I will use the same produce container plastic I'm using for the pulley discs. The fishing line will not be abraded/damaged by this in theory but only some pinching force applied to it to give it some tension and cause its feeding action of winching onto the pulley to be tight and snug to help prevent derailments and tangles and loose wraps. This system is meant to emulate and replace holding the string snugly between thumb and index finger as it's fed into the pulley tightly. Note: I'm not surprised I'm having these issues. The system was not under tension with the spring tension system I posted in my last post yet so that's largely why this is all happening. These measures are mainly resolving issues caused by that lack. However, by adding these problem preventers into the system, I make the system more redundantly protected from any issues coming up in the future. It's like backup systems for problem prevention here. Note: thinking back to the tremendous struggles and trial and error I watched the engineer on the YouTube channel "StuffMadeHere" has been an encouragement to me in this struggle. His videos never really have just perfect flawless success the first test run. There is always problems and tons of trial and error tweaking to resolve each issue and creatively work around it until he ends up with these beautiful and elegant solutions in the end that work great. This seems par for the course so I just have to remember that this type of headache phase is typical. Note: it is VERY tedious to have to untangle messes I've made due to lack of tension and proper guidance etc for the string windings. We have 5 total windings each around 3 feet long and all within a envelope close to the area of my thumbnail. It's all compact and tedious and little precision needle nose tweezers or the tip of a sewing needle is the only stuff small enough to even get in there to grab anything. Just a overwhelming mess to fix issues. Not for the faint of heart. If I did not believe this has strong potential I'd give up but everything so far isn't proving lack of merit but moreso is user error and not having a good setup going yet. But even that is a good thing as studying the error and causes of error is giving me great insight into what needs to be done to prevent future error and make the system reliable. I need this first hand education to preempt future errors.
10
« Last post by artbyrobot1 on October 30, 2024, 11:04:36 PM »
So it turns out that when the forward and reverse directions portions of the thumb tack pulley downgearing system are doing their thing, they won't always have the same mechanical advantage and so will be moving at different speeds. Therefore, I have to treat the forward and reverse pulley systems as entirely separate systems that have to be completely decoupled and handled independently, each pretending like the other one doesn't even exist. They can share the same thumb tack, but have to be decoupled. So I cut the #2 fishing crimp sleeve in half using my miter saw and have to redo the plastic discs phase. Each half #2 fishing crimp sleeve will have 3 plastic discs, one for outside of the larger diameter pulley and one for the outside of the smaller diameter pulley and one to split the two. Three total. And so with 3 plastic discs on each half crimp sleeve we have 6 total discs per thumb tack. We only had to deal with 5 before so things will be even tighter but it's fine. We have enough room. Next, since both sets of pulleys have different speeds that vary over time, the one that is not being actively winched in at any given time will be randomly releasing slack in a chaotic way. This can lead to tangling and all sorts of problems. To resolve this, we need a automatic slack tensioner system to aid the pulley system by keeping this releasing group of pulleys in a state of good tension at all times. This I will resolve by the pictured method. So basically a tension spring connected to a metal eyelet will at all times be trying to pull the fishing line out of alignment and draw slack out of it. So as looseness is detected, it will immediately draw that in removing it from the system maintaining taughtness everywhere at all times. This will prevent the pulleys from getting tangled or anything like that. This setup can be placed anywhere in the path between the pulley system and the joint the pulley system is to actuate.
|
|